jax.closure_convert#
- jax.closure_convert(fun, *example_args)[source]#
闭包转换工具,用于高阶自定义导数。
为了定义自定义导数,例如使用
jax.custom_vjp(f)
,目标函数f
必须将所有涉及微分的值作为形式参数。如果f
是一个高阶函数,因为它接受一个 Python 函数g
作为参数,那么存储在g
闭包中的值将对自定义导数规则不可见,并且涉及这些值的 AD 尝试将失败。解决这个问题的一种方法是通过提取这些值来转换闭包,并将它们作为显式形式参数传递到自定义导数边界之外。此工具执行该转换。更精确地说,它对函数fun
进行闭包转换,使其专门化为example_args
中给定参数的类型。当我们在此处提到
fun
的“闭包中的值”时,我们指的不是当fun
被定义时 Python 直接捕获的值(例如,如果属性存在,fun.__closure__
中的 Python 对象)。相反,我们指的是在fun
对example_args
执行期间遇到的、决定其输出的值。这可能包括,例如,在 Python 闭包中传递捕获的数组,即在fun
调用的函数的 Python 闭包中、它们所调用的函数的闭包中等等。函数
fun
必须是一个纯函数。示例用法
def minimize(objective_fn, x0): converted_fn, aux_args = closure_convert(objective_fn, x0) return _minimize(converted_fn, x0, *aux_args) @partial(custom_vjp, nondiff_argnums=(0,)) def _minimize(objective_fn, x0, *args): z = objective_fn(x0, *args) # ... find minimizer x_opt ... return x_opt def fwd(objective_fn, x0, *args): y = _minimize(objective_fn, x0, *args) return y, (y, args) def rev(objective_fn, res, g): y, args = res y_bar = g # ... custom reverse-mode AD ... return x0_bar, *args_bars _minimize.defvjp(fwd, rev)